Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10000, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693215

RESUMEN

Convolutional Neural Networks (CNNs) have been central to the Deep Learning revolution and played a key role in initiating the new age of Artificial Intelligence. However, in recent years newer architectures such as Transformers have dominated both research and practical applications. While CNNs still play critical roles in many of the newer developments such as Generative AI, they are far from being thoroughly understood and utilised to their full potential. Here we show that CNNs can recognise patterns in images with scattered pixels and can be used to analyse complex datasets by transforming them into pseudo images with minimal processing for any high dimensional dataset, representing a more general approach to the application of CNNs to datasets such as in molecular biology, text, and speech. We introduce a pipeline called DeepMapper, which allows analysis of very high dimensional datasets without intermediate filtering and dimension reduction, thus preserving the full texture of the data, enabling detection of small variations normally deemed 'noise'. We demonstrate that DeepMapper can identify very small perturbations in large datasets with mostly random variables, and that it is superior in speed and on par in accuracy to prior work in processing large datasets with large numbers of features.

2.
Genome Res ; 30(9): 1345-1353, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907883

RESUMEN

Nanopore sequencing enables direct measurement of RNA molecules without conversion to cDNA, thus opening the gates to a new era for RNA biology. However, the lack of molecular barcoding of direct RNA nanopore sequencing data sets severely affects the applicability of this technology to biological samples, where RNA availability is often limited. Here, we provide the first experimental protocol and associated algorithm to barcode and demultiplex direct RNA nanopore sequencing data sets. Specifically, we present a novel and robust approach to accurately classify raw nanopore signal data by transforming current intensities into images or arrays of pixels, followed by classification using a deep learning algorithm. We demonstrate the power of this strategy by developing the first experimental protocol for barcoding and demultiplexing direct RNA sequencing libraries. Our method, DeePlexiCon, can classify 93% of reads with 95.1% accuracy or 60% of reads with 99.9% accuracy. The availability of an efficient and simple multiplexing strategy for native RNA sequencing will improve the cost-effectiveness of this technology, as well as facilitate the analysis of lower-input biological samples. Overall, our work exemplifies the power, simplicity, and robustness of signal-to-image conversion for nanopore data analysis using deep learning.


Asunto(s)
Aprendizaje Profundo , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ARN/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...